Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 43(5): 114158, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38722742

RESUMO

Throughout the brain, astrocytes form networks mediated by gap junction channels that promote the activity of neuronal ensembles. Although their inputs on neuronal information processing are well established, how molecular gap junction channels shape neuronal network patterns remains unclear. Here, using astroglial connexin-deficient mice, in which astrocytes are disconnected and neuronal bursting patterns are abnormal, we show that astrocyte networks strengthen bursting activity via dynamic regulation of extracellular potassium levels, independently of glutamate homeostasis or metabolic support. Using a facilitation-depression model, we identify neuronal afterhyperpolarization as the key parameter underlying bursting pattern regulation by extracellular potassium in mice with disconnected astrocytes. We confirm this prediction experimentally and reveal that astroglial network control of extracellular potassium sustains neuronal afterhyperpolarization via KCNQ voltage-gated K+ channels. Altogether, these data delineate how astroglial gap junctions mechanistically strengthen neuronal population bursts and point to approaches for controlling aberrant activity in neurological diseases.

2.
Cells ; 12(8)2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37190042

RESUMO

Connexin 43, an astroglial gap junction protein, is enriched in perisynaptic astroglial processes and plays major roles in synaptic transmission. We have previously found that astroglial Cx43 controls synaptic glutamate levels and allows for activity-dependent glutamine release to sustain physiological synaptic transmissions and cognitiogns. However, whether Cx43 is important for the release of synaptic vesicles, which is a critical component of synaptic efficacy, remains unanswered. Here, using transgenic mice with a glial conditional knockout of Cx43 (Cx43-/-), we investigate whether and how astrocytes regulate the release of synaptic vesicles from hippocampal synapses. We report that CA1 pyramidal neurons and their synapses develop normally in the absence of astroglial Cx43. However, a significant impairment in synaptic vesicle distribution and release dynamics were observed. In particular, the FM1-43 assays performed using two-photon live imaging and combined with multi-electrode array stimulation in acute hippocampal slices, revealed a slower rate of synaptic vesicle release in Cx43-/- mice. Furthermore, paired-pulse recordings showed that synaptic vesicle release probability was also reduced and is dependent on glutamine supply via Cx43 hemichannel (HC). Taken together, we have uncovered a role for Cx43 in regulating presynaptic functions by controlling the rate and probability of synaptic vesicle release. Our findings further highlight the significance of astroglial Cx43 in synaptic transmission and efficacy.


Assuntos
Conexina 43 , Vesículas Sinápticas , Camundongos , Animais , Conexina 43/metabolismo , Vesículas Sinápticas/metabolismo , Astrócitos/metabolismo , Glutamina/metabolismo , Sinapses/metabolismo , Hipocampo/metabolismo , Camundongos Transgênicos
3.
Nat Commun ; 13(1): 753, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35136061

RESUMO

Presynaptic glutamate replenishment is fundamental to brain function. In high activity regimes, such as epileptic episodes, this process is thought to rely on the glutamate-glutamine cycle between neurons and astrocytes. However the presence of an astroglial glutamine supply, as well as its functional relevance in vivo in the healthy brain remain controversial, partly due to a lack of tools that can directly examine glutamine transfer. Here, we generated a fluorescent probe that tracks glutamine in live cells, which provides direct visual evidence of an activity-dependent glutamine supply from astroglial networks to presynaptic structures under physiological conditions. This mobilization is mediated by connexin43, an astroglial protein with both gap-junction and hemichannel functions, and is essential for synaptic transmission and object recognition memory. Our findings uncover an indispensable recruitment of astroglial glutamine in physiological synaptic activity and memory via an unconventional pathway, thus providing an astrocyte basis for cognitive processes.


Assuntos
Astrócitos/metabolismo , Glutamina/metabolismo , Hipocampo/fisiologia , Reconhecimento Psicológico , Transmissão Sináptica , Animais , Cognição , Corantes Fluorescentes/química , Ácido Glutâmico/química , Ácido Glutâmico/metabolismo , Glutamina/química , Hipocampo/citologia , Microscopia Intravital , Masculino , Camundongos , Camundongos Transgênicos , Modelos Animais , Sondas Moleculares , Neurônios/metabolismo , Rodaminas/química , Técnicas Estereotáxicas
4.
J Clin Invest ; 131(21)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34491914

RESUMO

Spreading depolarizations (SDs) are involved in migraine, epilepsy, stroke, traumatic brain injury, and subarachnoid hemorrhage. However, the cellular origin and specific differential mechanisms are not clear. Increased glutamatergic activity is thought to be the key factor for generating cortical spreading depression (CSD), a pathological mechanism of migraine. Here, we show that acute pharmacological activation of NaV1.1 (the main Na+ channel of interneurons) or optogenetic-induced hyperactivity of GABAergic interneurons is sufficient to ignite CSD in the neocortex by spiking-generated extracellular K+ build-up. Neither GABAergic nor glutamatergic synaptic transmission were required for CSD initiation. CSD was not generated in other brain areas, suggesting that this is a neocortex-specific mechanism of CSD initiation. Gain-of-function mutations of NaV1.1 (SCN1A) cause familial hemiplegic migraine type-3 (FHM3), a subtype of migraine with aura, of which CSD is the neurophysiological correlate. Our results provide the mechanism linking NaV1.1 gain of function to CSD generation in FHM3. Thus, we reveal the key role of hyperactivity of GABAergic interneurons in a mechanism of CSD initiation, which is relevant as a pathological mechanism of Nav1.1 FHM3 mutations, and possibly also for other types of migraine and diseases in which SDs are involved.


Assuntos
Depressão Alastrante da Atividade Elétrica Cortical , Neurônios GABAérgicos/metabolismo , Interneurônios/metabolismo , Transtornos de Enxaqueca/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.1/metabolismo , Neocórtex/metabolismo , Animais , Neurônios GABAérgicos/patologia , Interneurônios/patologia , Camundongos , Camundongos Transgênicos , Transtornos de Enxaqueca/genética , Transtornos de Enxaqueca/patologia , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Neocórtex/patologia
5.
Front Cell Dev Biol ; 9: 617801, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33928077

RESUMO

Malignant glioma including glioblastoma (GBM) is the most common group of primary brain tumors. Despite standard optimized treatment consisting of extensive resection followed by radiotherapy/concomitant and adjuvant therapy, GBM remains one of the most aggressive human cancers. GBM is a typical example of intra-heterogeneity modeled by different micro-environmental situations, one of the main causes of resistance to conventional treatments. The resistance to treatment is associated with angiogenesis, hypoxic and necrotic tumor areas while heterogeneity would accumulate during glioma cell invasion, supporting recurrence. These complex mechanisms require a focus on potential new molecular actors to consider new treatment options for gliomas. Among emerging and underexplored targets, transient receptor potential (TRP) channels belonging to a superfamily of non-selective cation channels which play critical roles in the responses to a number of external stimuli from the external environment were found to be related to cancer development, including glioma. Here, we discuss the potential as biological markers of diagnosis and prognosis of TRPC6, TRPM8, TRPV4, or TRPV1/V2 being associated with glioma patient overall survival. TRPs-inducing common or distinct mechanisms associated with their Ca2+-channel permeability and/or kinase function were detailed as involving miRNA or secondary effector signaling cascades in turn controlling proliferation, cell cycle, apoptotic pathways, DNA repair, resistance to treatment as well as migration/invasion. These recent observations of the key role played by TRPs such as TRPC6 in GBM growth and invasiveness, TRPV2 in proliferation and glioma-stem cell differentiation and TRPM2 as channel carriers of cytotoxic chemotherapy within glioma cells, should offer new directions for innovation in treatment strategies of high-grade glioma as GBM to overcome high resistance and recurrence.

6.
Glia ; 69(4): 817-841, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33058289

RESUMO

Astrocytes are the most numerous type of neuroglia in the brain and have a predominant influence on the cerebrovascular system; they control perivascular homeostasis, the integrity of the blood-brain barrier, the dialogue with the peripheral immune system, the transfer of metabolites from the blood, and blood vessel contractility in response to neuronal activity. These regulatory processes occur in a specialized interface composed of perivascular astrocyte extensions that almost completely cover the cerebral blood vessels. Scientists have only recently started to study how this interface is formed and how it influences cerebrovascular functions. Here, we review the literature on the astrocytes' role in the regulation of the cerebrovascular system. We cover the anatomy and development of the gliovascular interface, the known gliovascular functions, and molecular factors, the latter's implication in certain pathophysiological situations, and recent cutting-edge experimental tools developed to examine the astrocytes' role at the vascular interface. Finally, we highlight some open questions in this field of research.


Assuntos
Astrócitos , Barreira Hematoencefálica , Encéfalo , Neuroglia , Neurônios
7.
Neuropharmacology ; 166: 107951, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31945385

RESUMO

Cortical spreading depression (CSD) is a wave of transient network hyperexcitability leading to long lasting depolarization and block of firing, which initiates focally and slowly propagates in the cerebral cortex. It causes migraine aura and it has been implicated in the generation of migraine headache. Cortical excitability can be modulated by cholinergic actions, leading in neocortical slices to the generation of rhythmic synchronous activities (UP/DOWN states). We investigated the effect of cholinergic activation with the cholinomimetic agonist carbachol on CSD triggered with 130 mM KCl pulse injections in acute mouse neocortical brain slices, hypothesizing that the cholinergic-induced increase of cortical network excitability during UP states could facilitate CSD. We observed instead an inhibitory effect of cholinergic activation on both initiation and propagation of CSD, through the action of muscarinic receptors. In fact, carbachol-induced CSD inhibition was blocked by atropine or by the preferential M1 muscarinic antagonist telenzepine; the preferential M1 muscarinic agonist McN-A-343 inhibited CSD similarly to carbachol, and its effect was blocked by telenzepine. Recordings of spontaneous excitatory and inhibitory post-synaptic currents in pyramidal neurons showed that McN-A-343 induced overall a decrease of the excitatory/inhibitory ratio. This inhibitory action may be targeted for novel pharmacological approaches in the treatment of migraine with muscarinic agonists.


Assuntos
Colinérgicos/farmacologia , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Potenciais Pós-Sinápticos Inibidores/fisiologia , Neocórtex/metabolismo , Receptores Muscarínicos/metabolismo , Animais , Agonistas Colinérgicos/farmacologia , Depressão Alastrante da Atividade Elétrica Cortical/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Feminino , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Antagonistas Muscarínicos/farmacologia , Neocórtex/efeitos dos fármacos
8.
Sci Transl Med ; 10(443)2018 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-29848662

RESUMO

Epilepsies are characterized by recurrent seizures, which disrupt normal brain function. Alterations in neuronal excitability and excitation-inhibition balance have been shown to promote seizure generation, yet molecular determinants of such alterations remain to be identified. Pannexin channels are nonselective, large-pore channels mediating extracellular exchange of neuroactive molecules. Recent data suggest that these channels are activated under pathological conditions and regulate neuronal excitability. However, whether pannexin channels sustain or counteract chronic epilepsy in human patients remains unknown. We studied the impact of pannexin-1 channel activation in postoperative human tissue samples from patients with epilepsy displaying epileptic activity ex vivo. These samples were obtained from surgical resection of epileptogenic zones in patients suffering from lesional or drug-resistant epilepsy. We found that pannexin-1 channel activation promoted seizure generation and maintenance through adenosine triphosphate signaling via purinergic 2 receptors. Pharmacological inhibition of pannexin-1 channels with probenecid or mefloquine-two medications currently used for treating gout and malaria, respectively-blocked ictal discharges in human cortical brain tissue slices. Genetic deletion of pannexin-1 channels in mice had anticonvulsant effects when the mice were exposed to kainic acid, a model of temporal lobe epilepsy. Our data suggest a proepileptic role of pannexin-1 channels in chronic epilepsy in human patients and that pannexin-1 channel inhibition might represent an alternative therapeutic strategy for treating lesional and drug-resistant epilepsies.


Assuntos
Encéfalo/metabolismo , Encéfalo/patologia , Conexinas/metabolismo , Epilepsia/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Convulsões/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Córtex Cerebral/patologia , Modelos Animais de Doenças , Epilepsia/tratamento farmacológico , Epilepsia/patologia , Epilepsia do Lobo Temporal/metabolismo , Epilepsia do Lobo Temporal/patologia , Humanos , Ácido Caínico , Mefloquina/farmacologia , Mefloquina/uso terapêutico , Camundongos , Probenecid/farmacologia , Probenecid/uso terapêutico , Convulsões/tratamento farmacológico , Convulsões/patologia , Transdução de Sinais/efeitos dos fármacos
9.
Front Cell Neurosci ; 11: 349, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29163059

RESUMO

During brain ischemia, intense energy deficiency induces a complex succession of events including pump failure, acidosis and exacerbated glutamate release. In the cerebellum, glutamate is the principal mediator of Purkinje neuron anoxic depolarization during episodes of oxygen and glucose deprivation (OGD). Here, the impact of OGD is studied in Bergmann glia, specialized astrocytes closely associated to Purkinje neurons. Patch clamp experiments reveal that during OGD Bergmann glial cells develop a large depolarizing current that is not mediated by glutamate and purinergic receptors but is mainly due to the accumulation of K+ in the extracellular space. Furthermore, we also found that increases in the intracellular Ca2+ concentration appear in Bergmann glia processes several minutes following OGD. These elevations require, in an early phase, Ca2+ mobilization from internal stores via P2Y receptor activation, and, over longer periods, Ca2+ entry through store-operated calcium channels. Our results suggest that increases of K+ and ATP concentrations in the extracellular space are primordial mediators of the OGD effects on Bergmann glia. In the cerebellum, glial responses to energy deprivation-triggering events are therefore highly likely to follow largely distinct rules from those of their neuronal counterparts.

11.
Sci Signal ; 9(410): ra6, 2016 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-26758214

RESUMO

Astrocytes interact with neurons to regulate network activity. Although the gap junction subunits connexin 30 and connexin 43 mediate the formation of extensive astroglial networks that cover large functional neuronal territories, their role in neuronal synchronization remains unknown. Using connexin 30- and connexin 43-deficient mice, we showed that astroglial networks promoted sustained population bursts in hippocampal slices by setting the basal active state of neurons. Astroglial networks limited excessive neuronal depolarization induced by spontaneous synaptic activity, increased neuronal release probability, and favored the recruitment of neurons during bursting, thus promoting the coordinated activation of neuronal networks. In vivo, this sustained neuronal coordination translated into increased severity of acutely evoked epileptiform events and convulsive behavior. These results revealed that connexin-mediated astroglial networks synchronize bursting of neuronal assemblies, which can exacerbate pathological network activity and associated behavior. Our data thus provide molecular and biophysical evidence predicting selective astroglial gap junction inhibitors as anticonvulsive drugs.


Assuntos
Astrócitos/metabolismo , Conexina 43/metabolismo , Conexinas/metabolismo , Hipocampo/metabolismo , Rede Nervosa/metabolismo , Transmissão Sináptica/fisiologia , Animais , Astrócitos/citologia , Conexina 30 , Conexina 43/genética , Conexinas/genética , Hipocampo/citologia , Camundongos , Camundongos Knockout , Rede Nervosa/citologia
12.
Front Cell Neurosci ; 8: 348, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25408635

RESUMO

Connexin hemichannels are single membrane channels which have been traditionally thought to work in pairs to form gap junction channels across two opposing cells. In astrocytes, gap junction channels allow direct intercellular communication and greatly facilitate the transmission of signals. Recently, there has been growing evidence demonstrating that connexin hemichannels, as well as pannexin channels, on their own are open in various conditions. They allow bidirectional flow of ions and signaling molecules and act as release sites for transmitters like ATP and glutamate into the extracellular space. While much attention has focused on the function of connexin hemichannels and pannexons during pathological situations like epilepsy, inflammation, neurodegeneration or ischemia, their potential roles in physiology is often ignored. In order to fully understand the dynamic properties and roles of connexin hemichannels and pannexons in the brain, it is essential to decipher whether they also have some physiological functions and contribute to normal cerebral processes. Here, we present recent studies in the CNS suggesting emerging physiological functions of connexin hemichannels and pannexons in normal neuronal activity and behavior. We also discuss how these pioneer studies pave the way for future research to extend the physiological relevance of connexons and pannexons, and some fundamental issues yet to be addressed.

13.
Philos Trans R Soc Lond B Biol Sci ; 369(1654): 20130596, 2014 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-25225090

RESUMO

Astrocytes dynamic interactions with neurons play an active role in neurotransmission. The gap junction (GJ) subunits connexins 43 and 30 are strongly expressed in astrocytes and have recently been shown to regulate synaptic activity and plasticity. However, the specific role of connexin 43 in the morphological and electrophysiological properties of astrocytes in situ as well as in synaptic transmission remains unknown. Here, we show that connexin 43, a major determinant of astroglial GJ coupling, regulates astrocyte cell volume, but has no impact on astroglial passive membrane properties. Furthermore, we demonstrate that connexin 43 modulates glutamatergic synaptic activity of hippocampal CA1 pyramidal cells. This regulation involves changes in synaptically released glutamate, with no alteration in neuronal excitability or postsynaptic function. These results reveal connexin 43 as a critical player in neuroglial interactions by supporting synaptic efficacy.


Assuntos
Astrócitos/metabolismo , Conexina 43/metabolismo , Ácido Glutâmico/metabolismo , Hipocampo/fisiologia , Células Piramidais/fisiologia , Sinapses/metabolismo , Transmissão Sináptica/fisiologia , Análise de Variância , Animais , Conexina 43/genética , Hipocampo/citologia , Immunoblotting , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Técnicas de Patch-Clamp
14.
J Neurosci ; 34(34): 11228-32, 2014 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-25143604

RESUMO

Fast exchange of extracellular signals between neurons and astrocytes is crucial for synaptic function. Over the last few decades, different pathways of astroglial release of neuroactive substances have been proposed to modulate neurotransmission. However, their involvement in physiological conditions is highly debated. Connexins, the gap junction forming proteins, are highly expressed in astrocytes and have recently been shown to scale synaptic transmission and plasticity. Interestingly, in addition to gap junction channels, the most abundant connexin (Cx) in astrocytes, Cx43, also forms hemichannels. While such channels are mostly active in pathological conditions, they have recently been shown to regulate cognitive function. However, whether astroglial Cx43 hemichannels are active in resting conditions and regulate basal synaptic transmission is unknown. Here we show that in basal conditions Cx43 forms functional hemichannels in astrocytes from mouse hippocampal slices. We furthermore demonstrate that the activity of astroglial Cx43 hemichannels in resting states regulates basal excitatory synaptic transmission of hippocampal CA1 pyramidal cells through ATP signaling. These data reveal Cx43 hemichannels as a novel astroglial release pathway at play in basal conditions, which tunes the moment-to-moment glutamatergic synaptic transmission.


Assuntos
Astrócitos/metabolismo , Conexina 43/metabolismo , Potenciais Pós-Sinápticos Excitadores/fisiologia , Hipocampo/citologia , Transmissão Sináptica/fisiologia , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Animais , Animais Recém-Nascidos , Astrócitos/efeitos dos fármacos , Carbenoxolona/farmacologia , Conexina 43/genética , Estimulação Elétrica , Etídio/metabolismo , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Técnicas In Vitro , Camundongos , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Técnicas de Patch-Clamp , Peptídeos/farmacologia , Antagonistas do Receptor Purinérgico P2/farmacologia , Fosfato de Piridoxal/análogos & derivados , Fosfato de Piridoxal/farmacologia , Transmissão Sináptica/efeitos dos fármacos
15.
Front Cell Neurosci ; 7: 159, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24101894

RESUMO

A major breakthrough in neuroscience has been the realization in the last decades that the dogmatic view of astroglial cells as being merely fostering and buffering elements of the nervous system is simplistic. A wealth of investigations now shows that astrocytes actually participate in the control of synaptic transmission in an active manner. This was first hinted by the intimate contacts glial processes make with neurons, particularly at the synaptic level, and evidenced using electrophysiological and calcium imaging techniques. Calcium imaging has provided critical evidence demonstrating that astrocytic regulation of synaptic efficacy is not a passive phenomenon. However, given that cellular activation is not only represented by calcium signaling, it is also crucial to assess concomitant mechanisms. We and others have used electrophysiological techniques to simultaneously record neuronal and astrocytic activity, thus enabling the study of multiple ionic currents and in depth investigation of neuro-glial dialogues. In the current review, we focus on the input such approach has provided in the understanding of astrocyte-neuron interactions underlying control of synaptic efficacy.

16.
Commun Integr Biol ; 5(3): 248-54, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22896785

RESUMO

Astrocytes, the third element of the tripartite synapse, are active players in neurotransmission. Up to now, their involvement in neuronal functions has primarily been investigated at the single cell level. However, a key property of astrocytes is that they communicate via extensive networks formed by gap junction channels. Recently, we have shown that this networking modulates the moment to moment basal synaptic transmission and plasticity via the regulation of extracellular potassium and glutamate levels. Here we show that astroglial gap junctional communication also regulates neuronal network activity. We discuss these findings and their implications for brain information processing.

17.
J Neurosci Methods ; 194(2): 206-17, 2011 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-20951737

RESUMO

This technique proposes a new approach to correlate intra- and extracellular variations of the ionic concentrations in vivo by means of tapered optical waveguides coupled to standard electrophysiological electrodes to monitor in vivo simultaneously the intracellular and extracellular K(+) concentration as well as the neighboring field potential. The optical fibers were tapered to a final diameter of approximately 10 µm and were used to guide the excitation light deep into the tissue and to collect the fluorescence emanating from the intracellular milieu. This fiber was coupled to a double barrel ion-sensitive electrode forming a micro-optrode with a final diameter around 15 µm. The method was successfully used to record the intracellular K(+) evolution with the fluorescent indicator PBFI during three states: normal sleep-like patterns, paroxysmal seizures, and coma. While we could not disclose any phasic fluctuations of the intracellular K(+) during normal sleep patterns, they were clearly present during seizures and coma. In the majority of cases (58%), paroxysmal discharges were associated with positive variations of the intracellular fluorescence of 62±5% corresponding to extracellular K(+) increases of 2.04±0.4 mM. In the remaining cases (42%) intracellular K(+) dropped by 44.4±12% for an extracellular K(+) increase of 2.62±0.47 mM. We suggest that this differential behavior might reflect different cellular populations (glia vs. neurons, respectively). Comatose states were accompanied by an extracellular drop of K(+) of 1.31±0.13 mM, which was reflected, in all cases, by an intracellular K(+) increase of 39±4%.


Assuntos
Líquido Extracelular/metabolismo , Tecnologia de Fibra Óptica , Líquido Intracelular/metabolismo , Eletrodos Seletivos de Íons , Neurônios/citologia , Potássio/metabolismo , Animais , Benzofuranos/metabolismo , Encéfalo/citologia , Gatos , Coma/etiologia , Coma/metabolismo , Coma/patologia , Bases de Dados Factuais/estatística & dados numéricos , Eletroencefalografia , Éteres Cíclicos/metabolismo , Tecnologia de Fibra Óptica/instrumentação , Tecnologia de Fibra Óptica/métodos , Proteína Glial Fibrilar Ácida/metabolismo , Potássio/efeitos adversos , Reprodutibilidade dos Testes , Convulsões/induzido quimicamente , Convulsões/patologia , Sono/fisiologia
18.
J Neurosci ; 30(47): 15769-77, 2010 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-21106816

RESUMO

The K(ir)4.1 channel is crucial for the maintenance of the resting membrane potential of glial cells, and it is believed to play a main role in the homeostasis of extracellular potassium. To understand its importance in these two phenomena, we have measured in vivo the variations of extracellular potassium concentration ([K(+)](o)) (with potassium-sensitive microelectrodes) and membrane potential of glial cells (with sharp electrodes) during stimulations in wild-type (WT) mice and glial-conditional knock-out (cKO) K(ir)4.1 mice. The conditional knockout was driven by the human glial fibrillary acidic protein promoter, gfa2. Experiments were performed in the hippocampus of anesthetized mice (postnatal days 17-24). Low level stimulation (<20 stimuli, 10 Hz) induced a moderated increase of [K(+)](o) (<2 mm increase) in both WT and cKO mice. However, cKO mice exhibited slower recovery of [K(+)](o) levels. With long-lasting stimulation (300 stimuli, 10 Hz), [K(+)](o) in WT and cKO mice displayed characteristic ceiling level (>2 mm increase) and recovery undershoot, with a more pronounced and prolonged undershoot in cKO mice. In addition, cKO glial cells were more depolarized, and, in contrast to those from WT mice, their membrane potential did not follow the stimulation-induced [K(+)](o) changes, reflecting the loss of their high potassium permeability. Our in vivo results support the role of K(ir)4.1 in setting the membrane potential of glial cells and its contribution to the glial potassium permeability. In addition, our data confirm the necessity of the K(ir)4.1 channel for an efficient uptake of K(+) by glial cells.


Assuntos
Anestesia , Neuroglia/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/fisiologia , Potássio/metabolismo , Animais , Astrócitos/enzimologia , Astrócitos/metabolismo , Permeabilidade da Membrana Celular/genética , Permeabilidade da Membrana Celular/fisiologia , Líquido Extracelular/metabolismo , Humanos , Integrases/genética , Potenciais da Membrana/genética , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Canais de Potássio Corretores do Fluxo de Internalização/deficiência , Canais de Potássio Corretores do Fluxo de Internalização/genética
19.
J Neurosci ; 29(31): 9850-60, 2009 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-19657037

RESUMO

Isoflurane is a widely used anesthetic which safely and reversibly induces deep coma and associated burst suppression (BS) electroencephalographic patterns. Here we investigate possible underlying causes for the state of cortical hyperexcitability which was recently shown to be one of the characteristics of BS. Our hypothesis was that cortical inhibition is diminished during isoflurane-induced BS. Experiments were performed in vivo using intracellular recordings of cortical neurons to assess their responsiveness to stimulations of connected thalamic nuclei. We demonstrate that during BS EPSPs were diminished by 44%, whereas inhibitory potentials were completely suppressed. This finding was supported by additional results indicating that a decrease in neuronal input resistance normally found during inhibitory responses under low isoflurane conditions was abolished in the BS condition. Moreover, removal of inhibition occasionally revealed excitatory components which were absent during recordings before the induction of BS. We also show that the absence of inhibition during BS is not caused by a blockage of GABA receptors, since iontophoretically applied GABA shows receptor availability. Moreover, the concentration of extracellular chloride was increased during BS, as would be expected after reduced flow of chloride through GABA(A) receptors. Also inhibitory responses were reinstated by selective blockage of glial glutamate transporters with dihydrokainate. These results suggest that the lack of inhibition during BS is caused by reduced excitation, probably resulting from increased glial uptake of glutamate stimulated by isoflurane, which creates a diminished activation of cortical interneurons. Thus cortical hyperexcitability during BS is favored by suppressed inhibition.


Assuntos
Anestésicos/farmacologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/fisiologia , Isoflurano/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Sistema X-AG de Transporte de Aminoácidos/antagonistas & inibidores , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Anestesia , Animais , Gatos , Fármacos do Sistema Nervoso Central/farmacologia , Cloretos/metabolismo , Eletroencefalografia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Espaço Extracelular/efeitos dos fármacos , Espaço Extracelular/metabolismo , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Ácido Caínico/análogos & derivados , Ácido Caínico/farmacologia , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiologia , Neuroglia/efeitos dos fármacos , Neuroglia/fisiologia , Tálamo/efeitos dos fármacos , Tálamo/fisiologia , Ácido gama-Aminobutírico/metabolismo
20.
Eur J Neurosci ; 28(7): 1330-41, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18973560

RESUMO

In order to produce its desired effect, anaesthesia acts upon neuronal elements by modifying membrane conductances and transmitter interactions. The effect of higher doses of isoflurane, widely used in clinical settings, on the permeability of the blood-brain barrier (BBB) is meanwhile ignored. In this study we investigated the integrity of the BBB during various levels of isoflurane anaesthesia (1% and 3%) in cats by monitoring the extravasation of Evans blue. Simultaneously we measured the electroencephalogram (EEG), with particular emphasis on its direct current (DC) component. High doses of anaesthetic (3%) broke down the BBB in the cortex and thalamus, while milder doses (1%) only opened the BBB in the thalamus. The fluorescent signal of Evans blue was visible over an extravascular length of 23 mum in the cortex and 25 mum in the thalamus, similar to the diffusion of the same dye when the BBB was disrupted with mannitol. The opening of the BBB was associated with (i) a positive DC shift in the EEG measured on the scalp and (ii) an evaluated increase in cerebral volume of 2-2.8%. The opening of the BBB by high doses of isoflurane brings into discussion hitherto unexplored effects of anaesthesia on the brain. The electrophysiological correlate provided by the DC component of the EEG constitutes a promising option for the assessment of the BBB integrity during human anaesthesia.


Assuntos
Anestésicos Inalatórios/toxicidade , Barreira Hematoencefálica/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Eletroencefalografia/efeitos dos fármacos , Isoflurano/toxicidade , Anestésicos Inalatórios/efeitos adversos , Animais , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/fisiopatologia , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Edema Encefálico/induzido quimicamente , Edema Encefálico/metabolismo , Edema Encefálico/fisiopatologia , Gatos , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Córtex Cerebral/fisiopatologia , Corantes , Relação Dose-Resposta a Droga , Azul Evans , Potenciais Evocados/efeitos dos fármacos , Potenciais Evocados/fisiologia , Isoflurano/efeitos adversos , Degeneração Neural/induzido quimicamente , Degeneração Neural/metabolismo , Degeneração Neural/fisiopatologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Tálamo/efeitos dos fármacos , Tálamo/metabolismo , Tálamo/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...